Как найти радиус вписанной и описанной. Как найти радиус вписанной окружности

Окружность. Длина окружности. Касательная, дуга

Как найти радиус вписанной и описанной. Как найти радиус вписанной окружности

Окружность — это множество точек, которое располагается на одинаковом расстоянии от ее центра, представленного точкой.

Для любой точки L, лежащей на окружности, действует равенство OL=R. (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой.

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D). Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга: S=\pi R{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD. Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha {\circ}}{180{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N, то произведения отрезков хорд, разделенные точкой N, равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей.

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha {\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90 {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

\angle ADB = \angle AEB = \angle A

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180 {\circ}.

\angle ADB + \angle AKB = 180 {\circ}

\angle ADB = \angle AEB = \angle A

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left ( \cup DmC + \cup AlB \right )

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD – \angle ACB = \frac{1}{2} \left ( \cup DmC – \cup AlB \right )

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr,

где:

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p},

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника.

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3-мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180{ \circ}.

\angle A + \angle C = \angle B + \angle D = 180 {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

где:

a, b, c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Радиусы описанной и вписанной окружностей в квадрат

Как найти радиус вписанной и описанной. Как найти радиус вписанной окружности

Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. У квадрата:

  • все углы прямые, то есть, равны 90°;
  • все стороны, как и углы, равны;
  • диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.

При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O.

Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°.

Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.

Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:

Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.

Для наглядности приведем численный пример нахождения величины радиуса вписанной окружности в квадрат со стороной равной 13 см. В данном случае значение вписанного радиуса будет равно:

Легко решить и обратную задачу.

Предположим, что известен радиус вписанной окружности – 9 см, тогда анализируя пример нахождения величины радиуса вписанной окружности в квадрат, можно найти сторону квадрата:
Находим из этого уравнения неизвестное значение: .

Окружность описанная около квадрата

Вокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):

Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:

  • угол CDA=90°;
  • стороны AD=CD. Признак равнобедренного треугольника;
  • угол DAC равен ACD. Они равны по 45°.

Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
, отсюда Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы.

Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата.

Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:
Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:

Численный пример нахождения величины радиуса описанной окружности около квадрата будет таким.
Предположим, что диагональ квадрата равна , тогда:

Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности

Рассмотрим пример
Задача: радиус окружности вписанной в квадрат равен . Найти радиус окружности описанной около этого квадрата.

Дано:

  • треугольник ОСЕ – равнобедренный и прямоугольный;
  • ОЕ=ЕС=;
  • ОЕС=90°;
  • ЕОС=ОСЕ=45°;

Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса.

Дополним данный усеченный конус до полного . Пусть его высота будет x . Если высота усеченного конуса – h , то высота отсеченного конуса будет – x-h .

Высота усеченного конуса будет равна разности объема полного конуса с радиусом R1и высотой x и объема полного конуса с радиусом R2. и высотой x-h.

Из подобия этих конусов получаем:
Выразим x:

Тогда объем усеченного конуса можно выразить:
Применив формулу разницы кубов, имеем:

Таким образом, формула объема усеченной пирамиды имеет вид:

Пример расчета объема усеченного конусаРадиусы основания усеченного конуса равны 11 и 27 , образующая относится к высоте как 17:15 . Найдите объем усеченного конуса.

Объем усеченного конуса вычисляется по формуле:
Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и разница радиусов оснований образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора получаем: Так как образующая относится к высоте как 17:15, то L=17x, H=15x.

Тогда:

Тогда высота усеченного конуса будет равна:

Подставим значения в формулу объема усеченного конуса. Получим:

Page 3

Чтобы найти объем конуса необходимо произвести дополнительные построения.

Построим вписанную в конус правильную n-угольную пирамиду и опишем вокруг данного конуса правильную n-угольную пирамиду.Вписанная пирамида содержится в конусе. Из этого следует, что ее объем не больше объема конуса.

Описанная пирамида содержит конус, а это значит, что ее объем не меньше объема конуса.

Впишем в основание вписанной пирамиды окружность.
Если радиус вписанного правильного n-угольника равен R, то радиус вписанной в него окружности будет равен:

Объем вписанной пирамиды вычисляется по формуле:

где S – основание пирамиды.
Площадь данного круга вычисляется по формуле: Площадь основания вписанной пирамиды не меньше площади круга, содержащегося в ней

Поэтому утверждение, что объем вписанной в конус пирамиды не меньше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий эту пирамиду будет больше или равен
V≥

Теперь опишем окружность вокруг основания описанной вокруг конуса пирамиды.
Радиус этой окружности будет равен:

Площадь данного круга вычисляется по формуле:
Основание описанной пирамиды содержится в круге описанном вокруг него. Поэтому площадь основания пирамиды не больше
Поэтому утверждение,что объем описанной пирамиды не больше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий в эту пирамиду будет меньше или равен

Два полученных неравенства равны при любом n.

Если то
Тогда из первого неравенства следует, что V≥
Из второго неравенства

Отсюда следует, что

Объем конуса равен одной трети произведения радиуса на высоту.

Пример расчета объема конусаНайти объем конуса, если его радиус основания равен 3 см, а образующая 5 см.

Объем конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник.

Воспользовавшись теоремой Пифагора имеем:

Отсюда:

Подставим значение радиуса и высоты в формулу объема конуса.Имеем:

Page 4

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Page 5

У большинства детей младшего школьного возраста хорошо развита механическая память, которая задействуется при выучивании правил.

Но для отдельных детей, а особенно творческих личностей, зубрежка является невыносимой.

Родители, думающие, что их чадо не способно освоить изучение таблицы умножения и поэтому в дальнейшем будет отставать в математике, заблуждаются. На самом деле к нему нужен совершенно другой, особый подход.

Читать далее

Ниже представлена таблица степеней от 2 до 10 натуральных чисел от 1 до 20.
Читать далее

Таблица кубов натуральных чисел от 1 до 100
Читать далее

Таблица факториалов от 1 до 40
Читать далее

Page 6

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Как найти радиус вписанной и описанной. Как найти радиус вписанной окружности

Справочник по математикеГеометрия (Планиметрия)Треугольники

      Напомним определение биссектрисы угла.

      Определение 1. Биссектрисой угла называют луч, делящий угол на две равные части.

      Теорема 1 (Основное свойство биссектрисы угла). Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

      Доказательство. Рассмотрим произвольную точку D, лежащую на биссектрисе угла BAC, и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE, а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

      Теорема 2 (обратная теорема к теореме 1). Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Рис. 2

      Доказательство. Рассмотрим произвольную точку D, лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE, а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

      Определение 2. Окружность называют окружностью, вписанной в угол, если она касается касается сторон этого угла.

      Теорема 3. Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

      Доказательство. Пусть точка D – центр окружности, вписанной в угол BAC, а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

      Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности), а гипотенуза AD – общая. Следовательно

AF = AE,

что и требовалось доказать.

      Замечание. Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных, проведенных к окружности из одной точки, равны.

      Напомним определение биссектрисы треугольника.

      Определение 3. Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

      Теорема 4. В любом треугольнике все три биссектрисы пересекаются в одной точке.

      Доказательство. Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC, и обозначим точку их пересечения буквой O (рис. 4).

Рис. 4

      Опустим из точки O перпендикуляры OD, OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC, то в силу теоремы 1 справедливо равенство:

OD = OE,

      Поскольку точка O лежит на биссектрисе угла ACB, то в силу теоремы 1 справедливо равенство:

OD = OF,

      Следовательно, справедливо равенство:

OE = OF,

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC. Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

     Определение 4. Окружностью, вписанной в треугольник, называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности.

Рис. 5

      Следствие. В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

      Формулы, позволяющие найти радиус вписанной в треугольник окружности, удобно представить в виде следующей таблицы.

ФигураРисунокФормулаОбозначения
Произвольный треугольникПосмотреть вывод формулыa, b, c – стороны треугольника,S – площадь,r – радиус вписанной окружности,p – полупериметр.
Посмотреть вывод формулы
Равнобедренный треугольникПосмотреть вывод формулыa – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружности
Равносторонний треугольникПосмотреть вывод формулыa – сторона равностороннего треугольника,r – радиус вписанной окружности
Прямоугольный треугольникПосмотреть вывод формулa, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружности
Произвольный треугольник
гдеa, b, c – стороны треугольника,S –площадь,r –  радиус вписанной окружности,p – полупериметр.Посмотреть вывод формулы
гдеa, b, c – стороны треугольника,r – радиус вписанной окружности,p – полупериметр.Посмотреть вывод формулы
Равнобедренный треугольник
гдеa – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружностиПосмотреть вывод формулы
Равносторонний треугольник
гдеa – сторона равностороннего треугольника,r – радиус вписанной окружностиПосмотреть вывод формулы
Прямоугольный треугольник
гдеa, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружностиПосмотреть вывод формул
Произвольный треугольник
гдеa, b, c – стороны треугольника,S –площадь,r –  радиус вписанной окружности,p – полупериметр.Посмотреть вывод формулы
гдеa, b, c – стороны треугольника,r – радиус вписанной окружности,p – полупериметр.Посмотреть вывод формулы
Равнобедренный треугольник
гдеa – боковая сторона равнобедренного треугольника,b – основание,r – радиус вписанной окружностиПосмотреть вывод формулы
Равносторонний треугольник
гдеa – сторона равностороннего треугольника,r – радиус вписанной окружностиПосмотреть вывод формулы
Прямоугольный треугольник
гдеa, b – катеты прямоугольного треугольника,c – гипотенуза,r – радиус вписанной окружностиПосмотреть вывод формулы

Вывод формул для радиуса окружности, вписанной в треугольник

      Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

Рис. 6

      Доказательство. Из формулы

с помощью формулы Герона получаем:

что и требовалось.

      Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

Рис. 7

      Доказательство. Поскольку для произвольного треугольника справедлива формула

где

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

      Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

Рис. 8

      Доказательство. Поскольку для равнобедренного треугольника справедлива формула

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

      Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

      Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a, b – катеты прямоугольного треугольника, c – гипотенуза, r – радиус вписанной окружности.

      Доказательство. Рассмотрим рисунок 9.

Рис. 9

      Поскольку четырёхугольник CDOF является прямоугольникомпрямоугольником, у которого соседние стороны DO и OF равны, то этот прямоугольник – квадратквадрат. Следовательно,

СD = СF= r,

      В силу теоремы 3 справедливы равенства

      Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

      Замечание. Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Вписанная и вневписанная окружность

Как найти радиус вписанной и описанной. Как найти радиус вписанной окружности

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Вписанная окружность и площадь

Здесь скажем совсем коротко:

Есть такая формула:

 ,

где   – это полупериметр треугольника, то есть  , а   – радиус вписанной окружности.

Вневписанная окружность

Ну вот, пора приступать к самому непонятному. Что же это за зверь такой: «вневписанная окружность»? Сначала посмотри на картинку:

Видишь, окружность тоже чего-то касается, но «сидит» как-то снаружи, вне треугольника? Вот поэтому и называется вневписанной.

Окружность называется вневписанной для треугольника, если она касается ОДНОЙ стороны треугольника и продолжений двух других сторон.

А как ты думаешь, сколько у одного треугольника может быть вневписанных окружностей? Вот, представь себе, аж три!

Посмотри, вот, так:

Захватывает дух? Насладись впечатлением. Подробное обсуждение этой картинки смотри в следующих уровнях теории. Там ответим на всякие вопросы, типа

– A откуда взялся  ?

– A что это за точка  ?

– И что это вообще за тьма линий на рисунке?

А сейчас вернёмся к одной, какой-нибудь, вневписанной окружности и узнаем всего один, но очень важный факт.

 ,

или, что то же самое:  , где   – полупериметр.

Доказывать не будем, но ещё раз посмотри и запомни:

до «дальней» точки касания вневписанной окружности – ровно полупериметр.

Вписанная и вневписанная окружность

Вписанная в треугольник окружность – окружность, которая касается всех (трёх) сторон треугольника.

Теорема: В любой треугольник можно вписать окружность, причём единственным образом.

  • Центр вписанной окружности лежит на пересечении биссектрис углов треугольника.
  • Радиусы вписанной окружности, проведенные в точки касания, перпендикулярны сторонам треугольника:

 ,  ,  .

  • Отрезки от вершин треугольника до точек касания выражаются по формулам:

 .

Площадь треугольника через радиус вписанной окружности:  , где   – полупериметр треугольника, а   – радиус вписанной окружности.

Вневписанная окружность – окружность, которая касается одной стороны треугольника и продолжений двух других сторон.

  • Центр вневписанной окружности лежит на пересечении биссектрисы внутреннего угла треугольника ( ) и биссектрис двух внешних углов (  и  ).

Площадь треугольника через радиус вневписанной окружности:  , где   – полупериметр треугольника, а   – радиус вневписанной окружности.

ОСТАВШИЕСЯ 2/3 СТАТЬИ ДОСТУПНЫ ТОЛЬКО УЧЕНИКАМ YOUCLEVER!

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике по цене “чашка кофе в месяц”, 

А также получить бессрочный доступ к учебнику “YouClever”, Программе подготовки (решебнику) “100gia”, неограниченному пробному ЕГЭ и ОГЭ, 6000 задач с разбором решений и к другим сервисам YouClever и 100gia.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.